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We present an experimental study of the two-dimensional S= 1
2 square-lattice antiferromagnet

Cu�pz�2�ClO4�2 �pz denotes pyrazine-C4H4N2� using specific-heat measurements, neutron diffraction, and
cold-neutron spectroscopy. The magnetic field dependence of the magnetic ordering temperature was deter-
mined from specific-heat measurements for fields perpendicular and parallel to the square-lattice planes, show-
ing identical field-temperature phase diagrams. This suggest that spin anisotropies in Cu�pz�2�ClO4�2 are small.
The ordered antiferromagnetic structure is a collinear arrangement with the magnetic moments along either the
crystallographic b or c axis. The estimated ordered magnetic moment at zero field is m0=0.47�5��B and thus
much smaller than the available single-ion magnetic moment. This is evidence for strong quantum fluctuations
in the ordered magnetic phase of Cu�pz�2�ClO4�2. Magnetic fields applied perpendicular to the square-lattice
planes lead to an increase in the antiferromagnetically ordered moment to m0=0.93�5��B at �0H=13.5 T
evidence that magnetic fields quench quantum fluctuations. Neutron spectroscopy reveals the presence of a
gapped spin excitations at the antiferromagnetic zone center and it can be explained with a slightly anisotropic
nearest-neighbor exchange coupling described by J1

xy=1.563�13� meV and J1
z =0.9979�2�J1

xy.

DOI: 10.1103/PhysRevB.81.134409 PACS number�s�: 75.45.�j, 75.30.Ds, 78.70.Nx

I. INTRODUCTION

Low-dimensional quantum magnets are of great funda-
mental interest. Unlike three-dimensional magnets, they sup-
port strong quantum fluctuations which can result in novel
quantum excitations and novel ground states. Case in point is
the antiferromagnetic S=1 chain whose ground state features
hidden quantum order and is separated by a finite energy
from excited states.1,2 In contrast, antiferromagnetic S= 1

2
Heisenberg chains are gapless and feature fractionalized spin
excitations as the hallmark of quantum criticality.3

Increasing the dimensionality of a quantum magnet from
one to two dimensions generally reduces effects of quantum
fluctuations. The ground state of S= 1

2 square lattice Heisen-
berg antiferromagnet �AF� adopts Néel long-range order at
zero temperature. Nevertheless, strong quantum fluctuations
arising from geometrical frustration may destroy long-range
order in two dimensions.

Numerical studies of the two-dimensional �2D� S= 1
2

Heisenberg AF on a square lattice using quantum Monte
Carlo, exact diagonalization, coupled cluster, as well as se-
ries expansion calculations reveal a quantum renormalization
of the one-magnon energy in the entire Brillouin zone and
the existence of a magnetic continuum at higher energies.4–8

In recent years, quantum renormalization effects at zero field
have been studied using neutron scattering in a number of
good realizations of S= 1

2 square-lattice Heisenberg AFs.9–15

The addition of antiferromagnetic next-nearest-neighbor
�NNN� interactions destabilizes the antiferromagnetic ground

state and increases quantum fluctuations: according to the
J1-J2 model,16–19 where J1 and J2 are the nearest-neighbor
�NN� and the NNN exchange interactions, respectively, dif-
ferent ground states are stabilized as a function of J2 /J1. A
possible spin-liquid phase appears to be the ground state for
0.38�J2 /J1�0.6 and collinear order was found for J2 /J1
�0.6. Our previous study20 of Cu�pz�2�ClO4�2 has shown
that even a small J2 /J1�0.02 ratio enhances quantum fluc-
tuations drastically, leading to a strong magnetic continuum
at the antiferromagnetic zone boundary and the inversion of
the zone-boundary dispersion in magnetic fields.

Here we present an experimental investigation of the 2D
organometallic AF Cu�pz�2�ClO4�2, a good realization of the
weakly frustrated J2 /J1�0.02 quantum AF on a square lat-
tice with J1�1.56 meV. Due to the small energy scale of
the dominant exchange interaction, magnetic fields available
for macroscopic measurements and neutron scattering allow
the experimental investigation of this interesting model sys-
tem for magnetic fields up to about one third of the saturation
field strength. We combine specific heat, neutron diffraction,
and neutron spectroscopy to determine the spin Hamiltonian
and the key magnetic properties of this model material.
Specific-heat measurements show that the magnetic proper-
ties are nearly identical for fields applied parallel and perpen-
dicular to the square-lattice plane. This shows that spin
anisotropies are small in contrast to spatial anisotropies and
that it is sufficient to perform microscopic measurement for
just one field direction. Our microscopic neutron measure-
ments, on the other hand, provide information on the spin
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Hamiltonian that explain the nearly identical field tempera-
ture �HT� phase diagrams for the two field directions.
Specific-heat and neutron measurements of Cu�pz�2�ClO4�2
thus ideally complement each other.

Deuterated copper pyrazine perchlorate Cu�pz�2�ClO4�2
crystallizes in a monoclinic crystal structure described by
space group C2 /c, with lattice parameters a=14.045�5� Å,
b=9.759�3� Å, c=9.800�3� Å, and �=96.491�4�°.21 The
crystal structure is shown in Fig. 1. The Cu2+ ions occupy 4e
Wyckoff positions and pyrazine ligands link magnetic Cu2+

ions into square-lattice planes lying in the crystallographic
bc plane. The Cu2+-Cu2+ NN distances in the bc plane are
identical and equal to 6.92 Å.21 The twofold rotation axis
�0,y ,1 /2� and the mirror plane parallel to the ac plane en-
sure that all NN exchange interactions between Cu2+ are
identical. Tetrahedra of ClO4 located between the planes
�Fig. 1�a�� provide good spatial isolation of Cu2+ ions and
substantially decrease the interlayer interactions. Thus, per-
fect square lattices of copper ions with a superexchange path
mediated by pyrazine molecules are formed in the bc plane
�Fig. 1�b��.

The magnetic susceptibility shows good agreement with
that of the 2D S= 1

2 Heisenberg AF with an exchange inter-
action strength of J1=1.53�3� meV. Small interlayer interac-
tions result in a long-range antiferromagnetic order below
TN=4.21�1� K. The ratio of interlayer exchange, J�, to the
dominant intralayer exchange strength, J1, was estimated as
J� /J1=8.8�10−4.21–23

II. EXPERIMENTAL DETAILS

In order to obtain the field-temperature �HT� phase dia-
gram of Cu�pz�2�ClO4�2 we measured the specific heat as a
function of temperature for different magnetic field strengths
using a physical property measurement system by Quantum
Design. A single crystal of deuterated Cu�pz�2�ClO4�2 with
mass m=13 mg was fixed on a sapphire chip calorimeter
with Apiezon-N grease. The measurements were done using

the relaxation technique which consists of the application of
a heat pulse to a sample and the subsequent tracking of the
induced temperature change. The specific heat was obtained
in the range from T=2 K to T=30 K in magnetic fields of
up to �0H=9 T applied parallel and perpendicular to the
copper square-lattice planes. The measurements were done
with the steps of �T1=0.05 K, �T2=0.2 K, and �T3=1 K
in the temperature ranges T1=2–6 K, T2=6–8 K, and T3
=8–30 K, respectively. Care was taken to apply a small heat
pulse of 0.1% of the temperature step �T and each measure-
ment was repeated three times to increase accuracy. Specific
heat of Apiezon-N grease without Cu�pz�2�ClO4�2 crystal
was measured in the entire temperature range separately and
subtracted as a background from the total specific heat of the
sample and grease.

The HT phase diagram and the ordered magnetic structure
were studied by neutron diffraction using the cold-neutron
three-axis spectrometer RITA2 at the Paul Scherrer Institute,
Villigen, Switzerland. A crystal with dimensions 7�7
�1.5 mm3 and mass of m=85 mg was wrapped into alumi-
num foil, fixed with wires on a sample holder and aligned
with its reciprocal �0,k ,1� plane in the horizontal scattering
plane of the neutron spectrometer. Data were collected at T
=2.3 K and T=10 K in magnetic fields up to �0H
=13.5 T applied nearly perpendicular to the �0,k , l� plane
using an Oxford cryomagnet. Measurements were performed
with the pyrolytic graphite �PG� �002� Bragg reflection as a
monochromator. A cooled Be filter was installed before the
analyzer to suppress higher-order neutron contamination for
the final energy Ef=5 meV. We also used an experimental
setup without Be filter, which allowed to use the second-
order neutrons from the monochromator with Ei=20 meV,
thus allowing to access reflections at high wave-vector trans-
fers.

The spin dynamics in the antiferromagnetically ordered
phase was measured using the cold-neutron three-axis spec-
trometer PANDA at FRM-2, Garching, Germany. Two single
crystals with a total mass of m=1 g were wrapped into alu-
minum foil, fixed on a sample holder with wires and
coaligned in an array with a final mosaic spread of 1°. Re-
ciprocal �0,k ,1� plane of the sample was aligned with the
horizontal scattering plane of the neutron spectrometer.
These measurements were performed in zero magnetic field
and at temperature T=1.42 K using a 4He cryostat generally
referred to as an Orange cryostat. The final energy was either
set to Ef=4.66 meV or Ef=2.81 meV using a PG�002� ana-
lyzer. Data were collected using a PG�002� monochromator
and cooled Be filter installed before the analyzer.

III. RESULTS

A. Specific-heat measurements

The temperature dependence of the specific heat of
Cu�pz�2�ClO4�2 is shown in Fig. 2 for different magnetic
fields applied perpendicular and parallel to the copper
square-lattice plane. At all fields, the temperature depen-
dence of the specific heat reveals a well-defined cusplike
peak, indicating a second-order phase transition toward
three-dimensional �3D� long-range magnetic order. Previous

FIG. 1. �Color online� �a� Three-dimensional view of the crystal
structure of Cu�pz�2�ClO4�2. The Cu2+ ions are shown as big
spheres. The ClO4 tetrahedra are located between the copper layers
and pyrazine molecules link Cu2+ in bc plane. The D atoms are not
shown for simplicity. �b� The projection of the crystal structure on
the bc plane shows the Cu2+ square-lattice structure. The square
lattice are shifted by �0,0.5,0� from one layer to the next.
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zero-field studies of Cu�pz�2�ClO4�2 did not show an
anomaly in the specific heat.22 Most likely, the high accuracy
of our measurements played a crucial role in detecting the
zero-field anomaly in the specific-heat curve. The small size
of the ordering anomaly is a consequence of the low dimen-
sionality of the magnetism and an ordered magnetic moment
that, due to quantum fluctuations, is considerably smaller
than the free-ion value. The HT phase diagram assembled
from the specific-heat measurements is shown in Fig. 3. The
measurements show that the Néel temperature increases with
increasing magnetic field, from TN=4.24�4� K at zero field
to TN=5.59�3� K at �0H=9 T.

We also observe an increase in the specific heat with in-
creasing magnetic field in the paramagnetic phase just above
the 3D ordering temperature. We propose that the field de-
pendence of the specific-heat data is a consequence of field-
induced anisotropy in the 2D AF. In zero field, a pure 2D
Heisenberg AF orders at zero temperature but quantum
Monte Carlo simulations24 have shown that application of an
external field induces an Heisenberg-XY crossover and leads
to a finite temperature Berezinskii-Kosterlitz-Thouless25,26

�BKT� transition TBKT. One consequence of this crossover is
the increase in TBKT with external field for up to H
�HSAT /4 and then a gradual decrease in the transition tem-
perature with increased fields. While the zero-field 3D tran-
sition TN in Cu�pz�2�ClO4�2 is driven by the combination of
3D interaction and intrinsic XY anisotropy, the increase in
TN as a function of field may thus be driven by an increase of
the effective anisotropy and the associated increase of TBKT.
Similarly, we propose that the increase in the specific heat
above the 3D ordering temperature is caused by the field-
induced XY anisotropy: In the 2D antiferromagnet on a
square lattice, 2D topological spin vortices appear above the
BKT transition as the preferable thermodynamic configura-
tion. In applied magnetic field the vortices unbind above the
BKT transition, leading to the increase in the specific heat
above the ordering temperature. The anisotropy crossover
thus affects the specific heat in a manner similar to the ob-
served behavior.24

Remarkably, the HT phase diagrams are identical for
fields parallel and perpendicular to the square-lattice planes.
This suggests that the dominant exchange interactions be-
tween nearest copper spins J1 in bc plane are close to the
isotropic limit in spin space. This should not be confused
with the strong spatial two dimensionality of
Cu�pz�2�ClO4�2.

B. Magnetic order parameter

To determine the ordered magnetic structure of
Cu�pz�2�ClO4�2, several magnetic Bragg reflections were
measured by neutron diffraction. Figure 4 shows two mag-
netic peaks measured above and below the transition tem-
perature at Q= �0,1 ,0� and Q= �0,0 ,1� using a final energy
Ef=20 meV. This data directly demonstrates the presence of
magnetic order below TN. The magnetic Bragg peak widths
are limited by the instrumental resolution, confirming that
the magnetic order is long range. The field dependence of the
magnetic scattering at Q= �0,1 ,0� measured using final en-
ergy Ef=5 meV reveals an increase in magnetic intensity as
a function of field from zero to �0H=13.5 T as is shown in
Fig. 5. The magnetic scattering was determined by subtract-
ing the nonmagnetic background determined at T=10 K.
The increase in magnetic diffraction intensity with field is
most probably related to a quenching of quantum fluctua-
tions by the magnetic field that simultaneously also leads to
the observed increase in the transition temperature TN. This
result is in a good agreement with the specific-heat data in-
dicating enhanced XY anisotropy in the applied magnetic
field. The intensity measured at Q= �0,1 ,0� at T=10 K as
the function of applied field did not reveal any magnetic

FIG. 2. �Color online� Specific heat of Cu�pz�2�ClO4�2 as a
function of temperature for different magnetic field strengths. The
measurements for magnetic fields parallel and perpendicular to the
bc plane are shown in �a� and �b�, respectively. For convenience the
graphs are shown as lines connecting the data points and without
error bars.

FIG. 3. �Color online� Neutron-scattering peak intensity of Q
= �0,1 ,0� as a function of temperature and magnetic field, applied
perpendicular to the square-lattice planes. The results obtained by
specific-heat measurements in magnetic field applied parallel and
perpendicular to the Cu planes are shown by squares and circles,
respectively. The neutron data, measured for magnetic fields per-
pendicular to the copper planes, are shown by triangles.
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scattering, showing that magnetic fields do not lead to field-
induced antiferromagnetic order in the paramagnetic phase.

The critical magnetic behavior was studied by measuring
the peak intensity of the neutron scattering at the antiferro-
magnetic wave vector Q= �0,1 ,0� and Q= �0,3 ,0� as func-
tion of temperature in magnetic field up to �0H=13.5 T.
Typical scans are shown in Fig. 6. The solid line display that
the increase in the antiferromagnetic intensity in the ordered
phase close to TN is evidently steeper for high fields. The HT
phase diagram compiled from the temperature scans is
shown in Fig. 3 and it confirms the phase diagram obtained
from specific-heat measurements.

C. Ordered magnetic structure

The symmetry of the ordered magnetic phase was studied
by neutron diffraction. Group theory was used to restrict the
search only to magnetic structures that are allowed by sym-
metry. The magnetic Bragg peaks at Q= �0,1 ,0� and Q
= �0,3 ,0� indicate that the magnetic structure breaks the
C-centering of the chemical lattice and that Cu�pz�2�ClO4�2

adopts an antiferromagnetic structure for T�TN. Symmetry
analysis revealed six basis vectors which belong to four irre-
ducible representations and are listed in Table III �for details
see Appendix A�.

The analysis is complicated by the fact that the single
crystal probably consists of two domains with interchanged b
and c axes, which are nearly identical in length. A twinning
of the single crystal in this manner is indicated by the obser-
vation of both the Q= �0,2 ,3� and Q= �0,3 ,2� nuclear
Bragg peaks with similar intensity although Q= �0,3 ,2� is
not allowed for a C-centered lattice.

The experimental data are consistent with both �2 and �4
irreducible representations listed in Table II and with two
basis vectors 	� 2 and 	� 6. It is not possible to distinguish
between these two solutions because 	� 2 of the bc crystallo-
graphic domain is identical to 	� 6 of the cb crystallographic
domain and the fits were made assuming an equal population
of bc and cb crystallographic domains. The ordered magnetic
structure of Cu�pz�2�ClO4�2 can have magnetic moments
aligned antiferromagnetically either along the crystallo-
graphic b or c axis as is shown in Figs. 7�a� and 7�b�, respec-
tively. Due to a small number of observed magnetic reflec-
tions and the crystallographic twinning, our experiment
cannot distinguish between these two magnetic structures.
The collinear spin arrangement in bc plane is consistent with
the absence of the Dzyaloshinsky-Moriya �DM� interactions
between NN. The spatial arrangement of the ordered mag-
netic moments in adjacent square-lattice layers is ferromag-
netic and antiferromagnetic along ab and ac diagonal, re-
spectively. This is consistent with the chemical structure of
Cu�pz�2�ClO4�2, where the interlayer interaction pathway
along ac diagonal is shorter than the path along ab.

The value of the ordered magnetic moment was obtained
from a minimization of 
= �Rcalc−Rexp�, where Rexp is the
measured ratio of the magnetic Bragg peak intensity to the

FIG. 4. �Color online� �a� Neutron-scattering intensity at Q
= �0,1 ,0� measured at T=2.3 K and at T=10 K as a function of a
rotation of the sample around the vertical axis described by angle
�. The inset �b� shows the neutron scattering observed at Q
= �0,0 ,1� at the same temperature.

FIG. 5. The magnetic peak intensity of neutron scattering at Q
= �0,1 ,0� as function of magnetic field measured at T=2.3 K. The
nonmagnetic scattering was estimated from measurements at T
=10 K and subtracted from the overall peak intensity. The inset
shows the ordered antiferromagnetic moment as a function of field.

FIG. 6. �Color online� �a� The temperature dependence of the
neutron-scattering peak intensity measured at the antiferromagnetic
point Q= �0,1 ,0�. The data collected at �0H=0 T, �0H=2 T,
�0H=6 T, and �0H=13.5 T are shown by circles, squares, tri-
angles, and diamonds, respectively. The lines are guides to the eye.
The inset �b� represents the peak intensity at Q= �0,3 ,0� as the
function of temperature obtained at zero field. TN was found to be
the same as for Q= �0,1 ,0�.
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nuclear Bragg peak intensity, Rcalc= �F�Q�magn�2 / �F�Q�nucl�2,
F�Q�magn, and F�Q�nucl are the magnetic and nuclear struc-
ture factors, respectively. The fit was performed for two mag-
netic peaks observed at Q= �0,1 ,0� and Q= �0,3 ,0� and two
nuclear peaks measured at Q= �0,2 ,4� and Q= �0,0 ,6�. The
obtained value of the ordered magnetic moment in zero field
is m0=0.47�5��B. The comparison of Rcalc and Rexp for two
magnetic and two nuclear Bragg peaks is presented in the
Table I. The calculated value of the ordered magnetic mo-
ment is smaller than the free-ion magnetic moment, indicat-
ing the presence of strong quantum fluctuations in the mag-
netic ground state of Cu�pz�2�ClO4�2. The inset �b� in Fig. 5
displays the increase in the ordered antiferromagnetic mo-
ment from m0=0.47�5��B in zero field to m0=0.93�5��B in
�0H=13.5 T. This is direct evidence for the suppression of
quantum fluctuations by the applied magnetic field due to
induced XY anisotropy as suggested by our specific-heat
measurements.

D. Spin dynamics

The wave-vector dependence of the magnetic excitations
has been measured using neutron spectroscopy. Constant en-
ergy scans were performed near the antiferromagnetic zone
centers Q= �0,0 ,1� and Q= �0,−1,0� for energy transfer �E
in the range from �E=0.5 meV to �E=3 meV and are
shown in Fig. 8. The observed magnetic peaks are resolution

limited, indicating that these magnetic excitations are long-
lived magnons associated with a long-range ordered mag-
netic structure.

Constant wave-vector scans were performed at the anti-
ferromagnetic zone centers in the energy transfer range from
�E=0 meV to �E=0.7 meV �Figs. 9�a� and 9�b��. These
scans reveal a magnetic mode which is gapped and has a
finite energy Ezc=0.201�8� meV at the antiferromagnetic
zone center. The energy gap at the antiferromagnetic zone
center is attributed to the presence of a small XY anisotropy
in the nearest-neighbor two-ion exchange interactions be-
cause a single-ion anisotropy of type D�Sz�2 is not allowed
for S= 1

2 .
Constant wave-vector scans away from the antiferromag-

netic zone center carried out at higher energies are shown in
Fig. 9�c�. The energies of the magnetic excitation at the sym-
metrically identical antiferromagnetic zone-boundary points
Qzb1= �0,0.5,1� and Qzb2= �0,−0.5,1� are equal to Ezb1
=3.629�6� meV and Ezb2=3.599�13� meV, respectively.
The peaks observed in the constant wave-vector scans at
Qzb1 and Qzb2 are resolution limited. This experimental fact
together with the identity of the values Ezb1 and Ezb2 con-
firms the NN interactions in bc plane are identical along the
square-lattice directions. In case of different strengths for the
NN interactions in bc plane a broadening of the peaks at
Qzb1 and Qzb2 would be observed. From our previous study20

we know that there is also a small NNN interaction equal to

FIG. 7. Two possible magnetic structures of Cu�pz�2�ClO4�2 be-
longing to the second and the fourth irreducible representations �see
Table II�, are shown in �a� and �b�, respectively. Two adjacent
square-lattice Cu2+ layers, separated by a �0.5,0.5,0� lattice unit
translation, are depicted by open and filled arrows. Cu2+-Cu2+ in-
terlayer interaction pathway along ac diagonal corresponds to the
vertical distance between filled and open symbols in �a� and �b�.

TABLE I. The measured and the calculated ratios of squared
magnetic to nuclear structure factors for different Bragg peaks. The
calculated values were obtained from a minimization of 
= �Rcalc

−Rexp� and correspond to the ordered magnetic moment m0

=0.47�B.

�F�0,1,0��2

�F�0,2,4��2
�F�0,1,0��2

�F�0,0,6��2
�F�0,3,0��2

�F�0,2,4��2
�F�0,3,0��2

�F�0,0,6��2

Rexp�10−4 3.72�7� 5.13�12� 1.89�18� 2.60�25�
Rcalc�10−4 4.35 4.57 2.16 2.26

FIG. 8. �Color online� A series of constant energy scans per-
formed along the �0,k ,1� and �0,−1, l� directions at different en-
ergy transfers �E in zero magnetic field and at T=1.42 K. Please
note the changing scale of the vertical axis for the different scans.
The solid lines correspond to a convolution of two Gaussians with
the resolution function.
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2% of the NN exchange interaction. Therefore the observed
one-magnon mode was compared to the following model 2D
Hamiltonian:

Ĥ = �
	i,j


�J1
zSi

z · Sj
z + J1

xy�Si
x · Sj

x + Si
y · Sj

y�� + J2�
	i,k


Si · Sk,

�1�

where 	i , j
 indicates the sum over NN in the bc plane, 	i ,k

the sum over NNN in the bc plane, J1

z, J1
xy, and J2 are z and

xy components of the NN interaction and the NNN ex-
change, respectively.

The linear spin-wave theory �for details see Appendix B�
yields two spin-wave modes with the dispersion �
q

=
Aq
2−Bq

2, where Aq=4SJ1
xy+S�J1

xy−J1
z��cos�qb�+cos�qc��

−4SJ2+4SJ2 cos�qb� · cos�qc� and Bq=S�J1
xy+J1

z��cos�qb�
+cos�qc��. This implies that the exchange anisotropy mostly
affects the magnon energy close to the antiferromagnetic
zone center while the zone-boundary energy remains nearly
unaffected by the exchange anisotropy. In the 2D S= 1

2 AF,
the energy of a classical �large-S� spin-wave mode is renor-
malized due to quantum fluctuations with the best theoreti-
cally predicted renormalization factor Zc=1.18.4,8 Therefore
the energy at the antiferromagnetic zone boundary is equal to
Ezb=2ZcJ1

z −J2R, where J2R is the renormalized NNN inter-
action. The calculated xy component of NN and NNN ex-
change interactions are equal to J1

xy=1.563�13� meV and
J2�0.02J1

xy, respectively. According to the linear spin-wave
theory Ezc

2 =8J1
xy�J1

xy−J1
z� and thus J1

z =0.9979�2�J1
xy.

The values of the xy and z components of the NN inter-
action obtained from our neutron measurements are in good

agreement with the results of magnetic susceptibility
measurements,23 which yielded J1

xy=1.507�26� meV and J1
z

=0.9954J1
xy. The small XY anisotropy indicates that the

dominant exchange interaction between nearest copper ions
in bc plane in Cu�pz�2�ClO4�2, while spatially very aniso-
tropic, is close to the isotropic limit in spin space, explaining
the strong similarity of the HT phase diagrams measured in
magnetic fields applied parallel and perpendicular to copper
square-lattice �Fig. 3�.

The inelastic-scattering data were fitted with the Gaussian
instrumental resolution function convoluted numerically with
the model Hamiltonian �1�. The result of the fits is shown by
the lines in Figs. 8 and 9, and provides a good description of
the observed spin waves. The color plot of the neutron-
scattering intensity, which is shown in Fig. 10, summarizes
the observed magnetic excitations in both crystallographic
directions. The lines display the result of the linear spin-
wave theory, showing that the observed dispersive excitation
is well characterized by the Hamiltonian �1�.

The measured spin-wave dispersion is similar to that ob-
served in another 2D square-lattice antiferromagnetic mate-
rial, namely, copper deuteroformate tetradeuterate �CFTD�,
where the exchange interaction strength is equal to J
=6.3�3� meV and the energy gap of E=0.38�2� meV is
present at the antiferromagnetic zone center. However, the
energy gap in CFTD is induced by the presence of small
antisymmetric Dzyaloshinsky-Moriya interaction D
=0.0051�5� meV between NN.9,10 Another example with
comparable properties is K2V3O8 with 2D NN exchange
strength J=1.08�3� meV and small energy gap at antiferro-
magnetic point equal to E=0.072�9� meV,13 which is de-
scribed by Dzyaloshinsky-Moriya and easy-axis
anisotropies.27 In contrast, Dzyaloshinsky-Moriya interac-

FIG. 9. �Color online� The constant Q scans collected at small
energy transfer show the energy of a gapped spin wave at the anti-
ferromagnetic zone center performed at Q= �0,0 ,1� and at Q= �0,
−1,0� are presented in �a� and �b�, respectively. �c� Constant Q
scans performed close to the antiferromagnetic zone boundary at
high energy transfer show the dispersion of the spin wave. The
measurements were performed in zero magnetic field and at T
=1.42 K. The solid lines represent the convolution of a Gaussian
with the resolution function.

FIG. 10. �Color online� Color plot of the scattering intensity,
showing the dispersion along the Q= �0,−1, l� and Q= �0,k ,1� di-
rections measured at zero field, presented in the left and right pan-
els, respectively. The color plot was obtained by merging a total of
five and thirteen constant wave-vector scans, respectively. The solid
line represents the dispersion computed from linear spin-wave
theory using J1

xy=1.563 meV, J1
z =0.9979J1

xy, and NNN exchange
equal to J2=0.02J1

xy as described in the text.
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tions between NN in Cu�pz�2�ClO4�2 are forbidden by sym-
metry and the energy gap at the antiferromagnetic zone cen-
ter is generated by a small XY anisotropy.

We also studied the spin-wave dynamics along the anti-
ferromagnetic zone boundary by performing constant wave-
vector scans along the Q= �0,0.5, l� direction from l=1 to l
=2. Typical data are shown in Figs. 11�a�–11�c� and the ob-
served zone-boundary dispersion is shown in Fig. 11�d�. The
onset of the scattering at Q= �0,0.5,1.5� is reduced by
10.7�4�% in energy compared to Q= �0,0.5,1�, confirming
our recent independent measurement.20 The decrease in the
resonant mode energy at Q= �0,0.5,1.5� results from a reso-
nating valence bond quantum fluctuations between NN
spins.5,14 The observed dispersion at the zone boundary is
slightly larger than expected from series-expansion calcula-
tions and quantum Monte Carlo simulations for 2D Heisen-
berg square-lattice AF with NN interactions5,6 and can be
explained by the presence of a small antiferromagnetic NNN
interaction.

In order to subtract a nonmagnetic contribution from the
background in the energy scan at Q= �0,0.5,1.5� we per-
formed measurements with the sample turned away from
magnetic scattering. The background-subtracted data are
shown in Fig. 11�a�. The width of the scattering peak as a
function of energy at Q= �0,0.5,1.5� is clearly broader than
the instrumental resolution. This implies the existence of a
magnetic continuum scattering in this region of the antifer-
romagnetic zone boundary. The magnetic continuum with the
present PANDA measurements is consistent with our previ-
ous investigation of Cu�pz�2�ClO4�2.20 This nontrivial mag-
netic continuum and the dispersion at the zone-boundary re-
sult from quantum fluctuations in Cu�pz�2�ClO4�2 which are
enhanced by a small antiferromagnetic NNN interaction.

IV. CONCLUSIONS

We have performed a comprehensive study of the 2D S
= 1

2 square-lattice AF Cu�pz�2�ClO4�2 using a collection of

experimental techniques, including specific-heat measure-
ments, neutron diffraction, and neutron spectroscopy. The
HT phase diagram was mapped out for magnetic fields up to
�0H=9 T applied parallel and perpendicular to the Cu2+

square-lattice planes, showing that the HT boundaries of the
ordered phase have the same field dependence. This result
shows that the dominant exchange interactions between near-
est spins are close to the isotropic limit. Magnetic fields in-
duce a spin anisotropy and quench quantum fluctuations, as
we observed in the specific-heat measurements.

Neutron diffraction confirms the HT phase diagram ob-
tained from macroscopic measurements and extends it up to
�0H=13.5 T. The ordered magnetic moment of Cu2+ ions at
zero field, m0=0.47�5��B, is reduced from the expected
value, indicating the existence of strong quantum fluctua-
tions in the ground state. Magnetic fields quench quantum
fluctuations and significantly increase the size of the ordered
magnetic moment to m0=0.93�5��B at �0H=13.5 T. There-
fore neutron diffraction confirms the suppression of quantum
fluctuations by field-induced anisotropy seen in our specific-
heat measurements. The study of the ordered magnetic struc-
ture by neutron diffraction shows 2D antiparallel alignment
of spins at the neighbor sites.

At zero field, we observed a well-defined magnon mode
using neutron spectroscopy. Its dispersion is described by the
spin Hamiltonian with slightly anisotropic NN interaction
with xy and z components equal to J1

xy=1.563�13� meV, J1
z

=0.9979�2�J1
xy, and NNN exchange equal to J2�0.02J1

xy.
Therefore the proximity of the dominant exchange interac-
tion J1 to the isotropic limit measured by neutron spectros-
copy explains the similarity of the HT phase diagrams ob-
tained by specific-heat measurements in magnetic fields
applied parallel and perpendicular to bc plane.

Our results obtained by three different experimental tech-
niques confirm and compliment one another, clearly demon-
strating that Cu�pz�2�ClO4�2 is the first weakly frustrated 2D
S= 1

2 AF on a square lattice with the absence of
Dzyaloshinsky-Moriya interaction between NN. The mea-
surements verify a relatively large 10.7�4�% zone-boundary
dispersion and a rather strong magnetic continuum at the
zone boundary. We associate these features with resonating
valence bond fluctuations which are enhanced by a small
NNN AF interactions.
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APPENDIX A: THE GROUP-THEORY ANALYSIS

The crystal structure of Cu�pz�2�ClO4�2 belongs to the
monoclinic C2 /c space group �15�, whose Laue class and the
point group are 2 /m. The Cu2+ ions occupy 4e Wyckoff po-
sitions and they are located at r1= �0 0.7499 0.25�, r2
= �0 0.2501 0.75�, r3= �0.5 0.2499 0.25�, and r4
= �0.5 0.7501 0.75�. For C2 /c space group, reciprocal lat-
tice points are located at Q= �h ,k , l� with h+k=2n. The mag-

FIG. 11. �Color online� �a� The energy scan at Q= �0,0.5,1.5�
with the background subtracted as explained in the text. The energy
scans performed at wave vectors Q= �0,0.5,1.7� and Q
= �0,0.5,2� are shown in �b� and �c�, respectively. The red curves
are fits of a Gaussian function convoluted with the resolution func-
tion. �d� The antiferromagnetic zone-boundary dispersion measured
in zero magnetic field and at T=1.42 K.
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netic Bragg peaks were observed at Q1= �0,1 ,0� and at Q2
= �0,0 ,1�. Because of the presence of bc and cb crystallo-
graphic domains, the magnetic Bragg peaks at Q1 and Q2 are
indistinguishable. Therefore we cannot identify whether the
magnetic ordering vector is k= �0,0 ,1� or k= �0,0 ,0�. The
subgroups of the ordering wave vectors are identical and
consist of four symmetry operations which belong to four

different classes: 1, 2b , 1̄, and mac. Here, 1 is the identity, 2b

is a twofold rotation around the b axis, 1̄ is the inversion and
mac is a mirror plane in the ac plane. Therefore, there are
four one-dimensional irreducible representations whose char-
acters are summarized in the character table given in Table
II. The decomposition equation for the magnetic representa-
tion is �mag=1�1+1�2+2�3+2�4. The six basis vectors pre-
sented in Table III are calculated for two Cu2+ positions in
the primitive unit cell using the projection operator method
acting on a trial vector 	�

���
� = �

g�Gk

D�
���g��

i

i,gi

Rg	� det�Rg� ,

where ���
� is the basis vector projected from the �th row of

the �th irreducible representation, D�
���g� is the �th row of

the matrix representative of the �th irreducible representation
for symmetry operation g, i denotes the atomic position and
Rg is the rotational part of the symmetry operation g. Note
that basis vectors are identical for both k= �0,0 ,1� and k
= �0,0 ,0�.

DM interactions are defined as

ĤDM = �
	i,j


Dij · �Si � Sj� ,

where Dij is an axial vector. Action of any symmetry opera-
tion �including lattice translations� A on a DM vector Dij

must be equal to DA�i�A�j� and Dij=−Dji. We analyze the ac-

tion of the inversion symmetry operation 1̄ on the axial DM
vector D12, where i=1 and j=2 denotes the NN copper po-
sitions r1= �0 0.7499 0.25� and r2= �0 0.2501 0.75�, re-
spectively. The result of operation is

1̄�D12� = �D12
x D12

y D12
z � .

The application of the inversion symmetry on the ions posi-
tions leads to

1̄�D12� = D1̄�1�1̄�2� = �D21
x D21

y D21
z � .

These relations imply �D12
x D12

y D12
z �= �D21

x D21
y D21

z � which
is possible only in case of D12=0. Therefore, DM interac-
tions between NN in Cu�pz�2�ClO4�2 are forbidden by the
crystal symmetry.

APPENDIX B: THE LINEAR SPIN WAVE THEORY

Assuming the system in the antiferromagnetic Nèel
ground state with spins pointing along z and −z direction we
can make the Holstein-Primakoff transformation of the spin
compounds into bosonic creation and annihilation operators.
In linear spin-wave approximation it gives

Si
z = S − ai

+ai, Sj
z = − S + aj

+aj, Sk
z = S − ak

+ak,

Si
x = 
2S

ai + ai
+

2
, Si

y = 
2S
ai − ai

+

2i
,

Sj
x = 
2S

aj + aj
+

2
, Sj

y = 
2S
− aj + aj

+

2i
,

Sk
x = 
2S

ak + ak
+

2
, Sk

y = 
2S
ak − ak

+

2i
.

The quantization axis lies in bc plane and therefore J1
x=J1

z

=J and J1
y=J−�. The spin Hamiltonian written in bosonic

operators is:

Ĥ = �
	i,j

�4JS�ai

+ai + aj
+aj� + 2S

2J + �

2
�aiaj + ai

+aj
+�

+ 2S
�

2
�aiaj

+ + ai
+aj�� + �

	i,k

4J2S��aiak

+ + ai
+ak�

− �ai
+ai + ak

+ak�� ,

where 	i , j
 indicates the sum over NN in the bc plane, 	i ,k

the sum over NNN in the bc plane. After Fourier transfor-
mation obtained the Hamiltonian can be diagonalized using
standard Bogoliubov transformation

aq = − uq�q + vq�q
+,

aq
+ = − uq�q

+ + vq�q,

a−q = vq�q
+ − uq�q,

TABLE II. The character table and the irreducible representa-
tions obtained by performing group theory analysis for monoclinic
space group C2 /c �15�, the table setting choice is b1 and the mag-
netic ordering vectors k= �0,0 ,1� and k= �0,0 ,0�.

1 2b 1̄ mac

�1 1 1 1 1

�2 1 1 −1 −1

�3 1 −1 1 −1

�4 1 −1 −1 1

TABLE III. Six basis vectors calculated for two Cu2+ positions
in primitive unit cell as explained in Appendix A.

X1 X2

�1 	� 1 �0 1 0� �0 1 0�
�2 	� 2 �0 1 0� �0 −1 0�
�3 	� 3 �1 0 0� �1 0 0�

	� 4 �0 0 1� �0 0 1�
�4 	� 5 �1 0 0� �−1 0 0�

	� 6 �0 0 1� �0 0 −1�
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a−q
+ = vq�q − uq�q

+,

where �q and �q are the bosonic operators and vq and uq are
numbers. Finally, after the diagonalization we have

Ĥq = Eg.s. + �
q

S�2Aq�q
+�q + Bq��q

+�−q
+ + �q�−q�� �2�

and the eigenstates are given by �
q= �Aq
2−Bq

2�1/2, where

Aq = 4SJ + S��cos�qb� + cos�qc�� − 4SJ2

+ 4SJ2 · cos�qb� · cos�qc�

and

Bq = 2S�J − 1/2���cos�qb� + cos�qc�� .
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